extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C18).1C22 = C9⋊Dic6 | φ: C22/C1 → C22 ⊆ Aut C3×C18 | 72 | 4- | (C3xC18).1C2^2 | 216,26 |
(C3×C18).2C22 = Dic3×D9 | φ: C22/C1 → C22 ⊆ Aut C3×C18 | 72 | 4- | (C3xC18).2C2^2 | 216,27 |
(C3×C18).3C22 = C18.D6 | φ: C22/C1 → C22 ⊆ Aut C3×C18 | 36 | 4+ | (C3xC18).3C2^2 | 216,28 |
(C3×C18).4C22 = C3⋊D36 | φ: C22/C1 → C22 ⊆ Aut C3×C18 | 36 | 4+ | (C3xC18).4C2^2 | 216,29 |
(C3×C18).5C22 = S3×Dic9 | φ: C22/C1 → C22 ⊆ Aut C3×C18 | 72 | 4- | (C3xC18).5C2^2 | 216,30 |
(C3×C18).6C22 = D6⋊D9 | φ: C22/C1 → C22 ⊆ Aut C3×C18 | 72 | 4- | (C3xC18).6C2^2 | 216,31 |
(C3×C18).7C22 = C9⋊D12 | φ: C22/C1 → C22 ⊆ Aut C3×C18 | 36 | 4+ | (C3xC18).7C2^2 | 216,32 |
(C3×C18).8C22 = C9×Dic6 | φ: C22/C2 → C2 ⊆ Aut C3×C18 | 72 | 2 | (C3xC18).8C2^2 | 216,44 |
(C3×C18).9C22 = S3×C36 | φ: C22/C2 → C2 ⊆ Aut C3×C18 | 72 | 2 | (C3xC18).9C2^2 | 216,47 |
(C3×C18).10C22 = C9×D12 | φ: C22/C2 → C2 ⊆ Aut C3×C18 | 72 | 2 | (C3xC18).10C2^2 | 216,48 |
(C3×C18).11C22 = Dic3×C18 | φ: C22/C2 → C2 ⊆ Aut C3×C18 | 72 | | (C3xC18).11C2^2 | 216,56 |
(C3×C18).12C22 = C9×C3⋊D4 | φ: C22/C2 → C2 ⊆ Aut C3×C18 | 36 | 2 | (C3xC18).12C2^2 | 216,58 |
(C3×C18).13C22 = C3×Dic18 | φ: C22/C2 → C2 ⊆ Aut C3×C18 | 72 | 2 | (C3xC18).13C2^2 | 216,43 |
(C3×C18).14C22 = C12×D9 | φ: C22/C2 → C2 ⊆ Aut C3×C18 | 72 | 2 | (C3xC18).14C2^2 | 216,45 |
(C3×C18).15C22 = C3×D36 | φ: C22/C2 → C2 ⊆ Aut C3×C18 | 72 | 2 | (C3xC18).15C2^2 | 216,46 |
(C3×C18).16C22 = C6×Dic9 | φ: C22/C2 → C2 ⊆ Aut C3×C18 | 72 | | (C3xC18).16C2^2 | 216,55 |
(C3×C18).17C22 = C3×C9⋊D4 | φ: C22/C2 → C2 ⊆ Aut C3×C18 | 36 | 2 | (C3xC18).17C2^2 | 216,57 |
(C3×C18).18C22 = C12.D9 | φ: C22/C2 → C2 ⊆ Aut C3×C18 | 216 | | (C3xC18).18C2^2 | 216,63 |
(C3×C18).19C22 = C4×C9⋊S3 | φ: C22/C2 → C2 ⊆ Aut C3×C18 | 108 | | (C3xC18).19C2^2 | 216,64 |
(C3×C18).20C22 = C36⋊S3 | φ: C22/C2 → C2 ⊆ Aut C3×C18 | 108 | | (C3xC18).20C2^2 | 216,65 |
(C3×C18).21C22 = C2×C9⋊Dic3 | φ: C22/C2 → C2 ⊆ Aut C3×C18 | 216 | | (C3xC18).21C2^2 | 216,69 |
(C3×C18).22C22 = C6.D18 | φ: C22/C2 → C2 ⊆ Aut C3×C18 | 108 | | (C3xC18).22C2^2 | 216,70 |
(C3×C18).23C22 = D4×C3×C9 | central extension (φ=1) | 108 | | (C3xC18).23C2^2 | 216,76 |
(C3×C18).24C22 = Q8×C3×C9 | central extension (φ=1) | 216 | | (C3xC18).24C2^2 | 216,79 |